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Abstract. To expand the study of undefined cases, this paper extends
the aggregation operator from fuzzy logic to partial fuzzy logic. It first in-
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continuous partial t-norm to explore the relations between various classes
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1. Introduction

Fuzzy logic plays a crucial role in uncertainty research. Key algebraic struc-
tures, such as residuated lattices [1, 2, 3, 4, 5], which correspond to the t-norm and
its residual implication, as well as algebraic structures associated with overlap func-
tions [6, 7], have been the focus of extensive study by many scholars. In 1994, Foulis
and Bennett introduced the concept of effect algebra [8], which has since been widely
researched alongside residuated lattices [9, 10, 11, 12, 13]. Specifically, Zhou et al.
[14] explored lattice effect algebras and residuated lattices, examining the relations
between partial algebraic structures and quantum logic. As research progressed, it
became apparent that fuzzy logic has certain limitations in practical applications.
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To address these challenges and capture a broader range of uncertainties, Běhounek
et al. have introduced partial fuzzy logic [15, 16], which effectively describes “un-
defined” situations (a special kind of uncertainty). They applied partial fuzzy logic
to extend the ordinary discrete fuzzy transformation technique, thus generalizing it.
Borzooei started with t-norm and introduced [17] an operator under partial fuzzy
logic: partial t-norm, and Ji defined partial triangular implication [18]. Further
studies have focused on algebraic structures related to operators in partial fuzzy
logic. Zhang et al. [19] delved into partial t-norms, establishing their connection
with lattice effect algebras. They also introduced partial residuated lattices and
investigated their properties. T-norms have been widely applied in image processing
and classification tasks, although their associativity often does not work. Overlap
function, a non-associative aggregation function introduced in [20], extends the t-
norm while satisfying continuity. Its key feature is that associativity is not required
for information aggregation. Extensive research has been conducted on overlap func-
tions [21, 22, 23, 24, 25, 26, 27, 28]. In particular, Paiva et al. studied the naBL
algebra based on overlap function in [29], and Wang constructed overlap functions
on bounded lattices [30]. These functions have found applications in various fields,
including image processing, data classification, and decision-making [31, 32, 33, 34].
The general overlap function was introduced by De Miguel et al. [35] as an exten-
sion of the overlap function, differs in its relaxed boundary conditions, making its
application more versatile [36, 37].

A review of the existing literature reveals that operators in partial fuzzy logic
play a crucial role in research related to both partial fuzzy logic and quantum logic.
Therefore, extending the current research on these operators is highly valuable.
While the theoretical study of partial t-norms is relatively well-established, there
is still a gap in research on overlap functions and general overlap functions within
the context of partial fuzzy logic. To address this gap, we will focus on exploring
operators such as partial overlap functions and partial general overlap functions,
along with the related algebraic structures.

This paper is structured as such: The second section reviews the relevant existing
knowledge that lays the foundation for the subsequent discussions. The third sec-
tion defines the concept of partial overlap function and its induced partial residual
implication in the context of partial t-norm and overlap function, exploring their
properties. It then expands the concept of partial t-norm, introducing the new no-
tion of continuous partial t-norm and investigating its related properties. Next, the
concept of partial general overlap function is introduced by relaxing the boundary
conditions of partial overlap function, and construction method is explored. The
relations among these operators are examined with continuous partial t-norm act-
ing as a connecting element. The fourth section focuses on the algebraic aspects
of the operators discussed. It begins by introducing the concept of partial general
residuated lattice and proving that the partial algebraic structure corresponding to
partial general overlap function and its derived partial residual implication forms a
partial general residuated lattice. In fuzzy logic, each continuous t-norm on [0, 1]
corresponds to a BL-algebra, which was introduced by Hájek in [38, 39]. Based on
this, We define a partial BL-algebra, which consists of a continuous partial t-norm
and its derived residual implication. Specifically, we introduce the new concept of
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partial inflationary BL-algebra and prove that the partial algebraic structure corre-
sponding to the inflationary partial overlap function and its derived partial residual
implication forms a partial inflationary BL-algebra. The relations among these par-
tial algebraic structures are also analyzed. The final section summarizes the findings
of the research and outlines directions for future work.

2. Preliminaries

In this section, we will give some existing conclusions to facilitate their application
in subsequent sections.

Definition 2.1 ([20]). Let ⊗ be an operator on [0, 1]. If it meets the terms below:
for all s, t,m ∈ [0, 1],

(i) s ⊗ t = t ⊗ s,
(ii) st = 0 iff s ⊗ t = 0,
(iii) st = 1 iff s ⊗ t = 1,
(iv) if t ≥ m, then s ⊗ m ≤ s ⊗ t,
(v) ⊗ is continuous,

then ⊗ is referred to as an overlap function.

Definition 2.2 ([20]). Let ⊗ be an operator on [0, 1]. If it meets the terms below:
for all s, t,m ∈ [0, 1],

(i) s ⊗ t = t ⊗ s,
(ii) if st = 0, then s ⊗ t = 0,
(iii) if st = 1, then s ⊗ t = 1,
(iv) if t ≥ m, then s ⊗ m ≤ s ⊗ t,
(v) ⊗ is continuous,

then ⊗ is referred to as a general overlap function.

Definition 2.3 ([40]). Let ⊗ be a general overlap function on [0, 1]. Then ⊗ is said
to be inflationary, if s⊗ 1 ≥ s for each s ∈ [0, 1].

Definition 2.4 ([17]). Let A be a bounded lattice and ⊗ be an operator on A. If
it meets the conditions below: for all s, t,m ∈ A,

(i) s ⊗ 1 = s,
(ii) if t ⊗ s is defined, then s ⊗ t is also defined, and t ⊗ s = s ⊗ t,
(iii) if t ⊗ m and s ⊗ (t ⊗ m) are defined, then s ⊗ t and (s ⊗ t) ⊗ m are also

defined and s ⊗ (t ⊗ m) = (s ⊗ t) ⊗ m,
(iv) if s ≤ t, m ≤ n, and s ⊗ m, t ⊗ n are defined, then s ⊗ m ≤ t ⊗ n,

then ⊗ is referred to as a partial t-norm.

Definition 2.5 ([1]). A structure (A, ∧, ∨, ⊗,→⊗, 0, 1) is referred to as a residuated
lattice, if the terms below are met:

(i) (A, ∧, ∨, 0, 1) is a bounded lattice, where 0 is the minimum and 1 is the
maximum of A, respectively,

(ii) (A; ⊗, 1) is a commutative monoid,
(iii) (⊗, →⊗) is an adjoint pair on A, which m ≤ s →⊗ t if and only if s ⊗ m ≤

t for all s, t,m ∈ A.
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Definition 2.6 ([19]). Let ⊗ and →⊗ be two binary operators, and (A, ∧, ∨, 0,
1) is a bounded lattice. The algebra (A, ∧, ∨, ⊗, →⊗, 0, 1) is said to be a partial
residuated lattice (PRL), provided that for all s, t,m ∈ A,

(i) if t ⊗ s is defined, then s ⊗ t is defined, t ⊗ s = s ⊗ t,
(ii) if t ⊗ m, s ⊗ (t ⊗ m) are defined, then s ⊗ t and (s ⊗ t) ⊗ m are defined,

and (s ⊗ t) ⊗ m = s ⊗ (t ⊗ m),
(iii) s ⊗ 1 = s,
(iv) (⊗, →⊗) a partial adjoint pair on A.

Definition 2.7 ([40]). Let ⊗: A2 → A and →⊗: A2 → A be two binary operators
on A. (A, ∧, ∨, ⊗, →⊗, 0, 1) is referred to as a general residuated lattice (GRL), if
it meets the terms below:

(i) (A, ∧, ∨, 0, 1) is a bounded lattice with maximum 1 and minimum 0 values,
(ii) (A, ⊗) is a commutative groupoid,
(iii) s ⊗ t ≤ m iff t ≤ s →⊗ m for all s, t,m ∈ A.

Remark 2.8. The groupoid is an algebraic structure (A, ⊗), where ⊗ is a binary
operator defined on the nonempty set A.

Definition 2.9 ([40]). An algebra (A, ∧, ∨, ⊗, →⊗, 0, 1) is referred to as an
inflationary BL-algebra, if it is an inflationary GRL and meets the terms below: for
all s, t ∈ A,

(i) (Divisibility) s ⊗ (s →⊗ t) = s ∧ t,
(ii) (General prelinearity) (s →⊗ (t ⊗ 1)) ∨ (t →⊗ (s ⊗ 1)) = 1.

Definition 2.10 ([19]). Let A be a bounded lattice, where 0 is the minimum and 1
is the maximum of A. The binary operator PI: A2 → A is referred to as a partial
fuzzy implication (PFI), provided that for all s, t, s1, s2, t1, t2 ∈ A,

(PI1) if s1 ≤ s2, PI(s1, t) and PI(s2, t) are defined, then PI(s2, t) ≤ PI(s1, t),
(PI2) if t1 ≤ t2, PI(s, t1) and PI(s, t2) are defined, then PI(s, t1) ≤ PI(s, t2),
(PI3) PI(1, 0) = 0, PI(0, 0) = PI(1, 1) = 1.

Definition 2.11 ([23]). A fuzzy implication I : [0, 1]2 → [0, 1] meets: for all
s, t,m ∈ [0, 1],

(NP) the left neutrality property iff I(1, s) = s,
(EP) the exchange principle iff I(s, I(t, m)) = I(t, I(s, m)),
(IP) the identity principle iff I(s, s) = 1,
(LOP) the left ordering property iff s ≤ t ⇒ I(s, t) = 1,
(ROP) the right ordering property iff I(s, t) = 1 ⇒ s ≤ t,
(OP) the ordering property iff I(s, t) = 1 ⇔ s ≤ t,
(CB) the consequent boundary iff t ≤ I(s, t),
(LBC) the left boundary condition iff I(0, s) = 1,
(RBC) the right boundary condition iff I(s, 1) = 1.

3. Partial overlap functions

The concepts of partial overlap function, partial general overlap function, and
continuous partial t-norm on [0, 1] are reasonably well defined.
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Definition 3.1. An operator ⊗ : [0, 1]2 → [0, 1] is called a partial overlap function
(PO), provided that it meets the terms below: for all s, t,m ∈ [0, 1],

(i) if s ⊗ t and t ⊗ s are defined, then s ⊗ t = t ⊗ s,
(ii) if s ⊗ t is defined, then s ⊗ t = 0 iff st = 0,
(iii) if s ⊗ t is defined, then s ⊗ t = 1 iff st = 1,
(iv) if s⊗ t and s⊗m are defined and t ≤ m, then s⊗ t ≤ s⊗m,
(v) ⊗ is P-continuous. i.e., for all t ∈ [0, 1], unary function h(s) = s⊗ t(s ∈ [0, 1])

meet the terms: for all s1, s2, p ∈ [0, 1], if h(s1), h(s2) are defined and h(s1) ≤ p ≤
h(s2), then there exists u ∈ [0, 1] that holds h(u) = p.

Definition 3.2. Let ⊗ be a PO on [0, 1]. Then →⊗ is the operator defined as
below: for all s, t,m ∈ [0, 1],

s→⊗t :=

{
sup{m|s⊗m is defined and s⊗m ≤ t}, M 6= ∅ and supM exists
undefined, otherwise

Particularly, M = {m|s⊗m is defined and s⊗m ≤ t }. Then binary operator →⊗
is called the partial residual implication (PRI) induced by ⊗.

Example 3.3. The binary operator ⊗ is a PO and →⊗ is the PRI that is induced
by ⊗ below (s, t ∈ [0, 1]):

s⊗ t :=

{
s2t2 otherwise
undefined if s, t ∈ [0, 0.4],

s→⊗t :=


√
t

s otherwise
1 if t ≥ s2

undefined if s, t ∈ [0, 0.4] and t < s2.

Theorem 3.4. Let ⊗ be a PO on [0, 1] and →⊗ be the PRI that is derived from ⊗.
Then →⊗ is a PFI.

Proof. (PI1) For all s, t,m, a, b ∈ [0, 1], if t→⊗ m and s→⊗ m are defined one gets

s→⊗ m = sup{a|s⊗ a is defined and s⊗ a ≤ m}

and

t→⊗ m = sup{b|t⊗ b is defined and t⊗ b ≤ m},
then there exists b that holds t⊗ b is defined and t⊗ b ≤ m. Thus b→⊗ m ≥ t. And
if s ≤ t, then s ≤ b→⊗ m. Thus s⊗ b is defined and s⊗ b ≤ m. So we have

b ∈ {a|s⊗ a is defined and s⊗ a ≤ m}

and

{b|t⊗ b is defined and t⊗ b ≤ m} ⊆ {a|s⊗ a is defined and s⊗ a ≤ m}.

Hence sup{b|t⊗b is defined and t⊗b ≤ m} ⊆ sup {a|s⊗a is defined and s⊗a ≤ m}.
Therefore we can get s→⊗ m ≥ t→⊗ m.

(PI2) For all s, t,m, c, d ∈ [0, 1], if s→⊗ t and s→⊗ m are defined one gets

s→⊗ t = sup{c|s⊗ c is defined and s⊗ c ≤ t},

s→⊗ m = sup{d|s⊗ d is defined and s⊗ d ≤ m},
5
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then there exists c that holds s ⊗ c is defined and s ⊗ c ≤ t. And if t ≤ m, then
s⊗ c ≤ m. Thus c ∈ {d|s⊗ d is defined and s⊗ d ≤ m}. So we have

{c|s⊗ c is defined and s⊗ c ≤ t} ⊆ {d|s⊗ d is defined and s⊗ d ≤ m}.

It is clearly that

sup{c|s⊗ c is defined and s⊗ c ≤ t} ⊆ sup{d|s⊗ d is defined and s⊗ d ≤ m}.

Hence we can obtain s→⊗ t ≤ s→⊗ m.
(PI3) For all m ∈ [0, 1], if 0⊗ 1 and 1⊗ 1 are defined and

0→⊗ 0 = sup{m|0⊗m is defined and 0⊗m ≤ 0}
= sup{m|0⊗m is defined and 0⊗m = 0}
= 1,

then 0 →⊗ 0 = 1, 1 →⊗ 1 = sup {m|1 ⊗m is defined and 1 ⊗m ≤ 1} = 1. Thus
1→⊗ 1 = 1, 1→⊗ 0= sup {m|1⊗m is defined and 1⊗m ≤ 0} = sup {m|1⊗m is
defined and 1⊗m = 0} = 0. So 1→⊗ 0 = 0. �

Proposition 3.5. Let ⊗ be a PO on [0, 1], then the cases below are valid: for all
s, t, n,m ∈ [0, 1],

(1) if 1⊗ s is defined, then →⊗ meets (NP) iff 1 is the unit element of ⊗,
(2) if t⊗m, s⊗m, s⊗ (t⊗m) and t⊗ (s⊗m) are defined, then →⊗ satisfies (EP)

iff ⊗ is associative, s⊗ (t⊗m) = (s⊗ t)⊗m,
(3) if s⊗ 1 is defined, then →⊗ satisfies (IP) iff s⊗ 1 ≤ s,
(4) if 1⊗ s and s⊗m are defined, then →⊗ satisfies (LOP) iff s⊗ 1 ≤ s,
(5) if 1⊗ s is defined, then →⊗ satisfies (ROP) iff s⊗ 1 ≥ s,
(6) if 1⊗ s and s⊗m are defined, then →⊗ satisfies (OP) iff s⊗ 1 = s,
(7) if s ⊗ t and s →⊗ min{s, t} are defined and s ⊗ t ≤ min{s, t}, then →⊗

satisfies (CB),
(8) if 0⊗m is defined, then →⊗ satisfies (LBC) and (RBC),
(9) if s ⊗m, s ⊗ 0 and s ⊗ t are defined and s 6= 1, then s ⊗m = s ⊗ t iff s = 0

or t = m.

Proof. (1) (⇒) Suppose the sufficient condition holds and let s, t, n,m ∈ [0, 1]. If for
all s ∈ [0, 1], 1→⊗ s = sup {m|1⊗m is defined and 1⊗m ≤ s} = s. Then 1⊗s ≤ s.
Assume that for s1 ∈ [0, 1], 1⊗ s1 < s1 and let n = 1⊗ s1. Then n < s1 ≤ 1→⊗ n
= n, but there is incompatible. Thus 1 ⊗ s1 ≥ s1. To sum up, 1 ⊗ s = s and 1 is
the unit element of ⊗.

(⇐) Suppose the necessary condition holds, i.e., 1 ⊗ s = s for all s ∈ [0, 1] and,
then sup {m|1⊗m is defined and 1⊗m ≤ s} = sup {m|m ≤ s} = s.

(2) Suppose the necessary condition holds and assume that s⊗ (t⊗m) = t⊗ (s⊗
m) = n. Not hard to know that t⊗m = s→⊗ n and s⊗m = t→⊗ n. Then m =
t→⊗ (s→⊗ n) and m = s→⊗ (t→⊗ n). Thus t→⊗ (s→⊗ n) = s→⊗ (t→⊗ n).
The reverse is also true.

(3) Suppose 1⊗ s is defined. Then
s→⊗ s = sup {m|s⊗m is defined and s⊗m ≤ s} = 1

⇔ s⊗ 1 ≤ s.
(4) (⇒) Suppose the sufficient condition holds. Since s→⊗ s = sup {m|s⊗m is

defined and s⊗m ≤ s} = 1, one gets s⊗ 1 ≤ s.
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(⇐) When s ≤ t, it is clear that s ⊗ m ≤ s ⊗ 1 ≤ s ≤ t, then s →⊗ t = sup
{m|s⊗m is defined and s⊗m ≤ t} = 1.

(5) (⇒) Suppose the sufficient condition holds. Then we have

s→⊗ (s⊗ 1) = sup{m|s⊗m is defined and s⊗m ≤ s⊗ 1} = 1.

Thus s⊗ 1 ≥ s.
(⇐) Suppose s⊗ 1 ≥ s. Since s→⊗ t = sup {m|s⊗m is defined and s⊗m ≤ t}

= 1, one gets s⊗ 1 ≤ t, farther, s ≤ s⊗ 1 ≤ t. Thus s ≤ t. So →⊗ satisfies (ROP).
(6) This property can be easily proved to hold by (4) and (5).
(7) Suppose s ⊗ t, s →⊗ min{s, t} are defined and s ⊗ t ≤ min{s, t} ≤ t. Then

one gets

s→⊗ min{s, t} = sup{t|s⊗ t is defined and s⊗ t ≤ min{s, t}} ≥ t.

Since→⊗ is monotonically increasing with respect to the second variable, s→⊗ t ≥
s→⊗ min{s, t} ≥ t.

(8) Clearly established.
(9) (⇐) Suppose s = 0 or t = m and s⊗m, t⊗ 0,m⊗ 0 and s⊗ t are defined and

s 6= 1. Then 0⊗m = 0 = 0⊗ t and s⊗m = s⊗ t.
(⇒) Suppose the sufficient condition holds. Then due to the monotonicity of ⊗,

there are three cases that hold true.
Case 1: If 0⊗m = 0 = 0⊗ t. Then s = 0.
Case 2: If m = t, then s⊗m = s⊗ t.
Case 3: If s⊗m = s⊗ t = 1, then it is not valid clearly.

Thus s = 0 or t = m. �

Theorem 3.6. Let ⊗ be a PO on [0, 1] and →⊗ be the PRI that is induced by ⊗.
The statements below are equivalent: for any s, t,m ∈ [0, 1],

(1) if ⊗ is infinitely ∨-distributive, i.e.,
∨

i∈Imi and
∨

i∈I(s ⊗ mi) exist, then
s⊗ (

∨
i∈Imi) =

∨
i∈I(s⊗mi),

(2) s⊗m is defined and s⊗m ≤ t iff s→⊗ t is defined and m ≤ s→⊗ t,
(3) if s⊗m and s⊗ (s→⊗ t) are defined, then s⊗ (s→⊗ t) ≤ t,
(4) if {m|s ⊗ m is defined and s ⊗ m ≤ t} is non-empty, then there exists a

maximum of the set.

Proof. (1) ⇒ (2) For any n ∈ [0, 1], suppose that s ⊗m is defined and t ≥ s ⊗m.
Then

m ∈ {n|s⊗ n is defined and s⊗ n ≤ t},

m ≤ sup{n|s⊗ n is defined and s⊗ n ≤ t} = s→⊗ t.

Contrarily, if m ≤ s→⊗ t and based on the monotonicity of ⊗, the we have
s⊗m ≤ s⊗ (s→⊗ t)

= s⊗ (sup{n|s⊗ n is defined and s⊗ n ≤ t})
= sup{s⊗ n|s⊗ n is defined and s⊗ n ≤ t}
= t.

Thus s⊗m is defined and s⊗m ≤ t.
(2)⇒ (3) It is obvious that s →⊗ t ≤ s →⊗ t and based on the residuation

principle, one gets s⊗ (s→⊗ t) ≤ t.
7
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(3)⇒ (4) Suppose (3) holds and {m|s⊗m is defined and s⊗m ≤ t} is not empty.
Then s →⊗ t ∈ {m|s⊗m is defined and s⊗m ≤ t and s →⊗ t = sup {m|s⊗m is
defined and s⊗m ≤ t}. Thus this set has the maximum element.

(4)⇒ (1) Based on the monotonicity of ⊗, we get s⊗ (
∨

i∈Imi) ≥
∨

i∈I(s⊗mi).
We prove s⊗ (

∨
i∈Imi) ≤

∨
i∈I(s⊗mi). Let t =

∨
i∈I(s⊗mi). Then s⊗mi ≤ t. For

all mi ∈ [0, 1], mi ∈ {n|s⊗ n is defined and s⊗ n ≤ t}. Thus one gets mi ≤ s→⊗ t
and

∨
i∈Imi ≤ s→⊗ t. It is clear that

s⊗ (
∨
i∈I

mi) ≤ s⊗ (s→⊗ t) ≤ t =
∨
i∈I

(s⊗mi).

So s⊗ (∨i∈Imi) = ∨i∈I(s⊗mi). �

Definition 3.7. The binary operator ⊗ : [0, 1]2 → [0, 1] is said to be a continuous
partial t-norm (cp-t-norm), if it satisfies the following conditions:

(i) ⊗ is a partial t-norm,
(ii) ⊗ is P-continuous. i.e., for any t ∈ [0, 1], unary function h(s) = s⊗t(s ∈ [0, 1])

meet the terms: for all s1, s2, p ∈ [0, 1], if h(s1), h(s2) are defined and h(s1) ≤ p ≤
h(s2), then there exists u ∈ [0, 1] that holds h(u) = p.

Example 3.8. The binary operator ⊗ is showed as below: for all s, t ∈ [0, 1],

s⊗ t :=

{
max{0, s + t− 1} if s, t ∈ [0, 0.75] or s = 1 or t = 1
undefined otherwise.

Plainly, ⊗ is not a cp-t-norm (Let t = 0.4, s1 = 1 and s2 = 0.5. Then h(s1) = s1 ⊗ t
= max {0, 1 + 0.4− 1} = 0.4, h(s2) = s2 ⊗ t = max {0, 0.5 + 0.4− 1} = 0. Thus we
can not find an s3, so that h(s3) is defined and h(s3) = 0.3 ∈ [0, 0.4]. Hence ⊗ does
not satisfy P-continuous).

Example 3.9. The binary operator ⊗ is a cp-t-norm and →⊗ is the PRI induced
by ⊗ below: for all s, t ∈ [0, 1],

s⊗ t :=

{
min{s, t} otherwise
undefined if s, t ∈ [0, 0.5],

s→⊗t :=

 undefined if s, t ∈ [0, 0.5] and s > t
1 if s ≤ t
t otherwise.

Theorem 3.10. Let ⊗ be a cp-t-norm, →⊗ be the PRI that is induced by ⊗. For
all s, t ∈ [0, 1], if s ≤ t, t→⊗ s and t⊗ (t→⊗ s) are defined, then s = t⊗ (t→⊗ s).

Proof. For any s, t ∈ [0, 1], t →⊗ s is defined, we can get t →⊗ s = sup {m ∈
[0, 1]|t ⊗ m is defined and t ⊗ m ≤ s} = max {m ∈ [0, 1]|t ⊗ m is defined and
t⊗m ≤ s}, and t⊗m ≤ s ≤ t = t⊗1. By Definition 3.7, n exists and n ∈ [t→⊗ s, 1]
such that t ⊗ n = s. Thus t ⊗ n ≤ s implies n ≤ t →⊗ s. Since n ∈ [t →⊗ s, 1],
n ≥ t→⊗ s. So we have n = t→⊗ s. Hence s = t⊗ n = t⊗ (t→⊗ s). �

By weakening the boundary conditions of PO and requiring only necessary con-
ditions, a new concept of partial general overlap function can be obtained.
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Definition 3.11. An operator ⊗ : [0, 1]2 → [0, 1] is said to be a partial general
overlap function (PGO), if it meets some terms below: for any s, t,m ∈ [0, 1],

(i) if s⊗ t and t⊗ s are defined, then s⊗ t = t⊗ s,
(ii) if s⊗ t is defined and st = 0, then s⊗ t = 0,
(iii) if s⊗ t is defined and st = 1, then s⊗ t = 1,
(iv) if s⊗ t and s⊗m are defined and t ≤ m, then s⊗ t ≤ s⊗m,
(v) ⊗ is P-continuous, i.e., for all t ∈ [0, 1], unary function h(s) = s⊗ t meet the

following terms: for all s1, s2, p ∈ [0, 1], if h(s1), h(s2) are defined, and h(s1) ≤ p ≤
h(s2), then there exists u ∈ [0, 1] that holds h(u) = p.

Remark 3.12. If ⊗ is a PO, then ⊗ is a PGO.

Example 3.13. Define the operators ⊗ and →⊗ below: for all s, t ∈ [0, 1],

s⊗ t :=

{
max{0, s2 + t2 − 1} otherwise
undefined if s, t ∈ [0, 0.5],

s→⊗t :=

{ √
t + 1− s2 if t < s2

1 otherwise.

Then ⊗ is a PGO, →⊗ is the PRI induced by ⊗.

The following gives a new method of constructing a PGO.

Definition 3.14. The mapping⊗ is shown as a PGO, if there exists binary operators
f, k : [0, 1]2 → [0, 1], meanwhile, both f and k are defined and the defined intervals
have overlapping parts.

s⊗ t =
f(s, t)

f(s, t) + k(s, t)

meets the following items: for all s, t ∈ [0, 1],
(i) f and k are commutative,
(ii) f is increasing and k is decreasing,
(iii) if f(s, t) is defined and st = 0, then f(s, t) = 0,
(iv) if k(s, t) is defined and st = 1, then k(s, t) = 0,
(v) f and k are P-continuous,
(vi) f(s, t) + k(s, t) 6= 0.

Proof. From (i), we get f(s, t) = f(t, s), k(s, t) = k(t, s). Then

s⊗ t =
f(s, t)

f(s, t) + k(s, t)
=

f(t, s)

f(t, s) + k(t, s)
= t⊗ s,

⊗ fulfils symmetry.
From (ii), if s1 ≤ s2, then f(s2, t)k(s1, t) ≥ f(s1, t)k(s2, t). And we get

f(s1, t)(f(s2, t) + k(s2, t)) ≤ f(s2, t)(f(s1, t) + k(s1, t)).

Thus
f(s1, t)

f(s1, t) + k(s1, t)
≤ f(s2, t)

f(s2, t) + k(s2, t)
.

Clearly, s1 ⊗ t ≤ s2 ⊗ t. So ⊗ is increasing.
From (iii), if f(s, t) is defined and st = 0, then f(s, t) = 0. Thus s⊗ t = 0.
From (iv), if k(s, t) is defined and st = 1, then k(s, t) = 0. Thus s⊗ t = 1.
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From (v) and (vi), it is clearly that ⊗ is P-continuous. In summary, ⊗ is a
PGO. �

Example 3.15. Given f(s, t) and k(s, t) satisfying the conditions in Definition 3.14,
construct PGO ⊗ as follows,

f(s, t) :=

{
max{0, s + t− 1} × (min{s, t})2 if s, t ∈ [0.4, 0.9]
undefined otherwise

k(s, t) :=

{
1−st if s, t ∈ [0.3, 1]
undefined otherwise

s⊗ t :=
f(s, t)

f(s, t) + k(s, t)
=

{
max{0,s+t−1}×(min{s,t})2

max{0,s+t−1}×(min{s,t})2+1−st if s, t ∈ [0.4, 0.9]

undefined otherwise

Discuss the relations between the relevant operators studied in this paper (in-
cluding PO, cp-t-norm, and well-known operators) as follows (Refer to Figure 1).

Figure 1. Diagram of the relations between operators such as PO,
cp-t-norm, etc.

4. Partial general residuated lattices

This section focuses on the study of algebraic systems such as partial general
residuated lattices, partial BL-algebras and partial inflationary BL-algebras, and
elaborates on the relations between each algebraic structure.

Definition 4.1. Let A be a bounded lattice, ⊗ : A2 → A and →⊗: A2 → A be
binary operators. Then (A, ∧, ∨, ⊗, →⊗, 0, 1) is called a partial general residuated
lattice (PGRL), if it meets the terms below: for all s, t,m ∈ A,

(i) (A, ∧, ∨, 0, 1) is a bounded lattice with maximum 1 and minimum 0 values,
(ii) (A, ⊗) is a commutative groupoid,
(iii) if s⊗ t and s→⊗ m are defined, then m ≥ s⊗ t iff t ≤ s→⊗ m.

Example 4.2. Let A = {0, s, t, 1} and Figure 2 be the diagram of (A;≤). Consider
operations of ⊗ and →⊗ given as Tables 1 and 2 below. Then (A,∧,∨,⊗,→⊗, 0, 1)
is a PGRL.

Theorem 4.3. Let A = [0, 1], ⊗ be a PGO and →⊗ be the PRI induced by ⊗. Then
(A,∧,∨,⊗,→⊗, 0, 1) is a PGRL.

Proof. Obviously established by Definition 4.1. �
10
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Figure 2. The Hasse diagram of (A;≤).

⊗ 0 s t 1
0 0 0 0
s 0
t t t
1 0 t 1

Table 1. Partial operation of ⊗.

→⊗ 0 s t 1
0 1 1 1 1
s s 1 1 1
t 0 s 1 1
1 0 t 1

Table 2. Partial operation of →⊗.

Theorem 4.4. Let (A,∧,∨,⊗,→⊗, 0, 1) be a PGRL. Suppose (A,∧,∨, 0, 1) is a
complete lattice, s ⊗m and s ⊗ (s →⊗ t) are defined and {m|s ⊗m is defined and
s⊗m ≤ t} is not empty. Then for all s, t,m ∈ A,

s→⊗ t = max{m|s⊗m is defined and s⊗m ≤ t}.

Proof. If s⊗m and s⊗(s→⊗ t) are defined. It is easy to know that when s⊗(s→⊗
t) ≤ t, then s →⊗ t ∈ {m|s ⊗m is defined and s ⊗m ≤ t}. Since s →⊗ t = sup
{m|s⊗m is defined and s⊗m ≤ t}, we get

s→⊗ t = max{m|s⊗m is defined and s⊗m ≤ t}.
�

In this part, a partial algebraic structure consisting of cp-t-norm and its PRI is
presented - partial BL-algebra.

Definition 4.5. A PRL A = (A,∧,∨,⊗,→⊗, 0, 1) is said to be a partial BL-algebra,
if it satisfies (pbl1) and (pbl2): for all s, t ∈ A,

(pbl1) s→⊗ t and t→⊗ s are defined, imply (t→⊗ s) ∨ (s→⊗ t) = 1,
(pbl2) s→⊗ t and s⊗ (s→⊗ t) are defined, imply s⊗ (s→⊗ t) = s ∧ t.

Example 4.6. Let A = {0, s, t,m, 1}, Figure 3 is the diagram of (A;≤). The
operators ⊗ and →⊗ are defined by Tables 3 and 4. Then (A,∧,∨,⊗,→⊗, 0, 1) is a
partial BL-algebra.

11
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Figure 3. The Hasse diagram of (A;≤).

⊗ 0 s t m 1
0 0
s s
t t 0 t
m 0 m m
1 0 s t m 1

Table 3. Partial operation of ⊗.

→⊗ 0 s t m 1
0 1 1 1 1 1
s 1 1 1
t m 1 m 1
m t t 1 1
1 0 s t m 1

Table 4. Partial operation of →⊗.

Theorem 4.7. Let A = [0, 1], ⊗ be a cp-t-norm and →⊗ be the PRI that is derived
from ⊗. Then (A,∧,∨,⊗,→⊗, 0, 1) is a partial BL-algebra.

Proof. Let s, t ∈ A.
(pbl1) Suppose s→⊗ t and t→⊗ s are defined.
If t < s, then we have t→⊗ s = 1. Thus (s→⊗ t) ∨ (t→⊗ s) = 1.
If s ≤ t, then s→⊗ t = 1. Thus (s→⊗ t) ∨ (t→⊗ s) = 1.
(pbl2) Suppose s→⊗ t and s⊗ (s→⊗ t) are defined.
If t < s, then by Theorem 3.10, s ∧ t = t = s⊗ (s→⊗ t).
If s ≤ t, then s →⊗ t = 1. Thus s ⊗ (s →⊗ t) = s ⊗ 1 = s. So s ∧ t = s =

s⊗ (s→⊗ t). Hence (A,∧,∨,⊗,→⊗, 0, 1) is a partial BL-algebra obviously. �

Next, we will study a specific content partial inflationary BL-algebra in PGRL.

Definition 4.8. An algebra (A,∧,∨,⊗,→⊗, 0, 1) is referred to as a partial inflation-
ary BL-algebra (PIBL), if it is an inflationary PGRL that fulfils: for all s, t,m ∈ A,

(pibl1) if s→⊗ t and s⊗ (s→⊗ t) are defined, then s⊗ (s→⊗ t) = s ∧ t,
(pibl2) if s ⊗ 1, t ⊗ 1, s →⊗ (t ⊗ 1) and t →⊗ (s ⊗ 1) are defined, then (t →⊗

(s⊗ 1)) ∨ (s→⊗ (t⊗ 1)) = 1.

Theorem 4.9. Let A = [0, 1], ⊗ be an inflationary PO and →⊗ be the PRI that is
derived from ⊗. Then (A,∧,∨,⊗,→⊗, 0, 1) is a PIBL.

12
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Proof. It is obvious that (A,∧,∨,⊗,→⊗, 0, 1) is an inflationary PGRL. Let s, t ∈ A.
(pibl1) Since ⊗ is an inflationary PO, t →⊗ s and t ⊗ (t →⊗ s) are defined and

s ≤ t. Then we get t ⊗ 0 ≤ s ≤ t ≤ t ⊗ 1. And PO is P-continuous that there is
m ∈ [0, 1] such that t ⊗m = s. By the residuation principle, we get m ≤ t →⊗ s.
Thus s = t⊗m ≤ t⊗ (t→⊗ s). Meanwhile, because of t→⊗ s ≤ t→⊗ s, we obtain
t⊗(t→⊗ s) ≤ s. So from the above, it can be concluded that s∧t = s = t⊗(t→⊗ s).

(pibl2) If t⊗ 1, s⊗ 1, s→⊗ (t⊗ 1) and t→⊗ (s⊗ 1) are defined and s ≤ t, then
it is clearly that s→⊗ (t⊗ 1) = 1. Thus we get (s→⊗ (t⊗ 1))∨ (t→⊗ (s⊗ 1)) = 1.
So (A,∧,∨,⊗,→⊗, 0, 1) is a PIBL. �

Based on the definition of algebraic structures, and the study of related properties,
the algebraic structure relations can be summarized as follows:

Figure 4. Diagram of the relations between algebraic structures
such as PGRL, partial BL-algebra, etc.

5. Conclusions

This paper investigates the construction, properties, and residual implications of
partial overlap functions (PO), partial general overlap functions (PGO), and other
related operators. It examines these partial operators through the angles of alge-
braic structures, presenting novel concepts such as partial general residuated lat-
tice (PGRL), partial BL-algebra, and partial inflationary BL-algebra (PIBL). These
concepts are discussed in detail, with an emphasis on their interrelationships, as
illustrated in Figure 4.

Future research can delve deeper into the algebraic structures introduced, partic-
ularly exploring the intricate connections between PGRL, partial BL-algebra, and
non-classical logic algebras. Such studies would contribute significantly to the ad-
vancement of algebraic theory, particularly in the context of non-classical logics.
Additionally, there is great potential for further investigation into the practical ap-
plications of these operations within partial fuzzy logic systems, particularly for
handling incomplete information and supporting decision-making processes. Fur-
thermore, future work could build upon existing models, such as those in [41], to
extend these ideas and develop more refined approaches.
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